Writing Equations to Model Data

When data have equally-spaced inputs, you can analyze patterns in the differences of the outputs to determine what type of function can be used to model the data. Linear data have constant *first differences*. Quadratic data have constant *second differences*. The first and second differences of $f(x) = x^2$ are shown below.

Equally-spaced x-values

Example I: Decide if the data represents A linear or quadratic function.

MODELING WITH MATHEMATICS The table shows the distances y a motorcyclist is from home after x hours.

Time (hours), x	0	1	2	3
Distance (miles), y	0	45	90	135

- **a.** Determine what type of function you can use to model the data. Explain your reasoning.
- **b.** Write and evaluate a function to determine the distance the motorcyclist is from home after 6 hours.

Example 2: Decide if the data represents a linear OR quadratic function.

MODELING WITH MATHEMATICS A baseball is thrown up in the air. The table shows the heights *y* (in feet) of the baseball after *x* seconds. Write an equation for the path of the baseball. Find the height of the baseball after 5 seconds.

Time, x	0	2	4	6
Baseball height, y	6	22	22	6

Example 3: Write the quadratic function in standard form. Use the function to find the coordinates of the vertex.

Write an equation of the parabola that passes through the points (-1, 4), (0, 1), and (2, 7).

Example 4: Write the quadratic function in standard form. Use the function to find (-3,) and (5,).

Example 5:

The table shows the estimated profits y (in dollars) for a concert when the charge is x dollars per ticket. Write and evaluate a function to determine what the charge per ticket should be to maximize the profit.

Ticket price, x	2	2 5 8		11	14	17
Profit, y	2600	6500	8600	8900	7400	4100

Example 6:

The table shows the results of an experiment testing the maximum weights y (in tons) supported by ice x inches thick. Write a function that models the data. How much weight can be supported by ice that is 22 inches thick?

Ice thickness, x	12	14	15	18	20	24	27
Maximum weight, y	3.4	7.6	10.0	18.3	25.0	40.6	54.3