Name:	Period:	First Score:	First attempt due:	Final Score:
<u>Practice</u> : Function Operations & Comp	osition		Final corrections due:	

Perform the indicated operation and simplify completely. Show all work to get credit.

	f(x) = 10x	g(x) = -5x	h(x) = 8	j(x) = -10
	1] $(f+j)(x) =$		2] $(f - g)(x) =$	
	3] $(g \cdot h)(x) =$		4] $\left(\frac{g}{j}\right)(x) =$	
	5] $(h-g)(5) =$		6] $(f \cdot g)(-1) =$	
	f(x) = 6x + 4	g(x) = 4 - 6x	h(x) = 2x	j(x) = -2
	7] $(f+g)(x) =$		8] $(f - g)(x) =$	
	9] $(f \cdot j)(x) =$		$10]\left(\frac{g}{j}\right)(x) =$	
	$11](h-g)\left(\frac{1}{2}\right) =$		$12](f \cdot g)\left(-\frac{1}{6}\right) =$	
				
	$f(x) = x^2$	g(x) = 10x + 5	$h(x) = \sqrt{x}$	j(x) = 5
	13] $(f + g)(x) =$		14] $(f - g)(x) =$	
	$15](f \cdot j)(x) =$		$16]\left(\frac{g}{j}\right)(x) =$	
	17](h+j)(49) =		18] $(f \cdot h)(4) =$	

	$f(x) = x^2 - 15$		g(x)	$=\sqrt{x}$	
_	x	f(x)	x	g(x)	19] $(f \circ g)(36) =$
_	1	-14	1	1	
	2	-11	4	2	20] $(g \circ g)(16) =$
	3	-6	9	3	
	4	1	16	4	21] $(g \circ f)(4) =$
	5	10	25	5	
	6	21	36	6	22] $(f \circ f)(4) =$
	7	34	49	7	

Use the tables of ordered pairs to determine the value of each composite function.

Use the graph to determine the value of each composite function.

- 23] $(h \circ f)(3) =$ 24] $(f \circ g)(4) =$
- 25] $(f \circ f)(-4) =$
- 26] $(g \circ g)(1) =$
- 27] $(g \circ h)(0) =$

Use the functions to determine the value of each composite function algebraically.

$f(x) = 2x^2$	g(x) = 3x - 2	h(x) = 3 - 4x	$j(x) = \frac{6}{x}$
28] $(f \circ g)(3) =$	29] $(h \circ j)(12) =$	$30](g \circ h)(x) =$	31] $(h \circ g)(x) =$

32] Sally Salesperson sells shoes part time at Super Shoes in the South Street Mall. She earns a 2% commission on total sales over \$5,000, which is paid as a bonus at the end of the year. Let her total sales be represented by x. f(x) = x - 5000 and g(x) = 0.02x

Which composition of functions would calculate her bonus at the end of the year? $(f \circ g)(x)$ or $(g \circ f)(x)$? Explain your reasoning.

33] Sally sold \$9,172 in shoes this year. Use composition of functions to calculate her bonus. Show work.