Practice:
Function Operations \& Composition

First Score:	First attempt due:	Final Score:
	Final corrections due:	

Perform the indicated operation and simplify completely. Show all work to get credit.

$$
f(x)=10 x \quad g(x)=-5 x \quad h(x)=8 \quad j(x)=-10
$$

1] $(f+j)(x)=$
2] $(f-g)(x)=$

3] $(g \cdot h)(x)=$
4] $\left(\frac{g}{j}\right)(x)=$

5] $(h-g)(5)=$
6] $(f \cdot g)(-1)=$

$f(x)=6 x+4$	$g(x)=4-6 x$	$h(x)=2 x$	$j(x)=-2$
7] $(f+g)(x)=$		$(f-g)(x)=$	
9] $(f \cdot j)(x)=$		$(x)=$	
11] $(h-g)\left(\frac{1}{2}\right)=$		-g) $\left(-\frac{1}{6}\right)=$	
$f(x)=x^{2}$	$g(x)=10 x+5$	$h(x)=\sqrt{x}$	$j(x)=5$
13] $(f+g)(x)=$		$(f-g)(x)=$	
15] $(f \cdot j)(x)=$		$\left(\frac{g}{j}\right)(x)=$	
17] $(h+j)(49)=$		$f \cdot h)(4)=$	

Use the tables of ordered pairs to determine the value of each composite function.

$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}-\mathbf{1 5}$		$\boldsymbol{g}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$		
x	$f(x)$		x	$g(x)$
1	-14		1	1
2	-11		4	2
3	-6	9	3	
4	1	16	4	
5	10	25	5	
6	21	36	6	
7	34	49	7	

19] $(f \circ g)(36)=$
20] $(g \circ g)(16)=$
21] $(g \circ f)(4)=$

22] $(f \circ f)(4)=$

Use the graph to determine the value of each composite function.
23] $(h \circ f)(3)=$
24] $(f \circ g)(4)=$
25] $(f \circ f)(-4)=$
26] $(g \circ g)(1)=$
27] $(g \circ h)(0)=$

Use the functions to determine the value of each composite function algebraically.

$f(x)=2 x^{2}$	$g(x)=3 x-2$	$h(x)=3-4 x$	$j(x)=\frac{6}{x}$
28$](f \circ g)(3)=$	$29](h \circ j)(12)=$	$30](g \circ h)(x)=$	$31](h \circ g)(x)=$

32] Sally Salesperson sells shoes part time at Super Shoes in the South Street Mall. She earns a 2% commission on total sales over $\$ 5,000$, which is paid as a bonus at the end of the year.
Let her total sales be represented by $x . f(x)=x-5000$ and $g(x)=0.02 x$
Which composition of functions would calculate her bonus at the end of the year? $(f \circ g)(x)$ or $(g \circ f)(x)$? Explain your reasoning.

33] Sally sold $\$ 9,172$ in shoes this year. Use composition of functions to calculate her bonus. Show work.

