

1) Evaluate the piecewise function, g(x), for different input values:

$$g(x) = \begin{cases} 5x & \text{if } x < 0 \\ 2x + 1 & \text{if } x = 0 \\ 3x - 1 & \text{if } x > 0 \end{cases}$$

$$g(7) = \underline{\qquad} g(-7) = \underline{\qquad} g(0) = \underline{\qquad} g(1.73) = \underline{\qquad}$$

What input value will give an output of 14? Symbolically, g(?) = 14?

All three of these pieces are _____ (chose one: linear or quadratic)

2) Complete the table for the following piecewise function:

$$f(x) = \begin{cases} 6x + 7 \text{ for } x < 0\\ 2x^2 - 4 \text{ for } x \ge 0 \end{cases}$$

	х	-3	-2	-1	0	1	1.5	$\sqrt{3}$	$\sqrt{5}$	3
Γ	f(x)									

Which piece is quadratic? _____

3) Consider the following scenario:

Logan wants to join a readers' club at the public library. If he joins to read 5 books or less, it will cost him a initial fee of \$12 plus \$6 per book (including the first book). If he joins to read more than 5 books, he will get a library card for \$48 for a full year of unlimited books.

If x = number of books, complete the table to show how much Logan can expect to pay depending on the number of books he plans to read.

x	1	2	3	4	5	6	7	8	9	10	11	12
L(x)												

Can you write the piecewise equation for L(x)? $L(x) = \{$

How many books does Logan need to read in order for a library card to be the better deal?

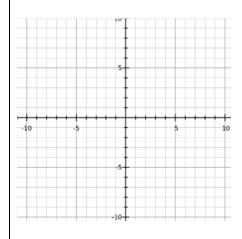
4) Evaluate the piecewise function, p(x), for different input values:

$$p(x) = \begin{cases} 5x + 2 & \text{if } x < 0 \text{ or } x > 2\\ 2x^2 & \text{if } 0 \le x < 2\\ -3x & \text{if } x = 2 \end{cases}$$

$$p(-3) =$$
_____ $p(1) =$ ____ $p(0) =$ ____ $p(2) =$ ____ $p(7) =$ ____ $p\left(\frac{1}{2}\right) =$ ____

5) The Lafayette High School Athletics Department has different ticket packages depending on how many sporting events you plan to attend.

The piecewise function $A(x) = \begin{cases} 5.00x, & 0 \le x < 8\\ 2.50x + 5, & 8 \le x < 20\\ 1.00x + 5, & x \ge 20 \end{cases}$


How much will it cost someone if they go to 10 games? T(10) = ______ How much will it be if someone goes to just the 6 football games? T(6) = ______ How much will it be if someone goes to 30 games? T() = ______ If Dr. Kitchens pays \$50 for his ticket package, how many games did he go to?

6) Graph the piecewise function.

First, complete the table of values before you plot the points.

$$f(x) = \begin{cases} \frac{2}{3}x - 4 & x \le -2 \text{ or } x > 5\\ 3 - x & -2 < x < 5\\ -x & x = 5 \end{cases}$$

х	-6	-3	-2	-1	0	1	2	3	4	5	6	7
f(x)												

