\qquad
(Compositions, Transformations, Inverses)

Beginning in the cell marked \#1, work the problem and then hunt for the answer in one of the remaining cells. When you find it, mark that problem \#2. Work that problem and then hunt for your answer. Proceed in this manner until you complete the circuit. You must write in the final answer.

Answer: $\frac{4 x}{6-9 x}$ \# \qquad Write a formula for the function created by shifting the graph of $y=x^{2}$ to the right 3 units and down 7 units.	Answer: $\quad f^{-1}(x)=\frac{4-9 x}{2 x-1}$ \# \qquad Let $f(x)=\sqrt{x-3}$. Find $f^{-1}(x)$.
Answer: $\quad f(x)=-(2 x)^{3}+1$ \# \qquad Let $f(x)=4 x+9$. Find $f^{-1}(x)$.	Answer: $\quad 10$ \# \qquad Use the values in the table to determine the value of $h(4)$ where $h(x)=f\left(\frac{1}{2} x\right)+4$
Answer: $\quad 3 x^{2}-6 x+13$ \# \qquad Let $h(x)=\frac{4}{x-9}$ and $g(x)=\frac{6}{x}$. Find $(h \circ g)(x)$. Simplify, if necessary.	Answer: 18 \# \qquad Function values for R and C are given in the table. Use the information given to determine the value of $C(R(8))$

Answer: 17 \# \qquad Let $f(x)=\frac{4}{x-9}$ and $g(x)=\frac{6}{x}$. Find $g(f(-3))$	Answer: $\quad f^{-1}(x)=-3+\sqrt{x}$ \# \qquad Let $f(x)=x^{2}-3$. Find a domain on which $f(x)$ is one-to-one. Write the restricted domain here: \qquad To progress in the circuit, find $f^{-1}(x)$
Answer: - 3 \# \qquad Let $f(x)=3 x-1$ and $g(x)=x^{2}-10$. Find $(f \circ g)(x)$.	Answer: -18 \# \qquad Let $g(x)=\sqrt{x+3}$. Find $g(g(33))$.
Answer: $\quad 3 x^{2}-31$ \qquad Let $f(x)=x-1$ and $g(x)=3 x^{2}+10$. Find $(g \circ f)(x)$.	Answer: $\quad f^{-1}(x)=\frac{x-9}{x+4}$ \# \qquad Let $f(x)=\frac{x+4}{2 x+9}$. Find $f^{-1}(x)$.

Answer: $\quad f(x)=-(x-2)^{3}+1$	Answer: $f(x)=(x+7)^{2}+3$
\# \qquad The function shown in the graph is based on $y=x^{3}$. Determine a formula for the function in the graph (using transformations).	\# \qquad Use the values in the table to determine the value of $h(4)$ where $h(x)=\frac{1}{2} f(x+4)$
Answer: $\quad f(x)=(x-3)^{2}-7$ \# \qquad Write a formula for the function created by shifting the graph of $y=x^{2}$ to the left 7 units and up 3 units.	Answer: $\quad f^{-1}(x)=x^{2}+3$ \# \qquad Let $f(x)=(x+3)^{2}$. Find a domain on which $f(x)$ is one-to-one. Write the restricted domain here: \qquad To progress in the circuit, find $f^{-1}(x)$

